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Finite Element Method Applied to
Skin-Effect Problems in Strip
~Transmission Lines
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Abstract —This paper describes a two-dimensional finite element ap-
proach to the quasi-static TEM analysis of shielded or open conducting
strips with applications to VLSI parasitic elements and transmission line
characteristics of printed circuits. The approach uses a combination of
two-dimensional and one-dimensional finite elements to solve the field
problems in terms of the magnetic vector potential in the frequency
domain. The method and the algorithm can be applied to shielded or open
conducting strips and takes into account the skin effect and proximity
effect between structures.

The ac resistance and reactance calculated by using this approach can be
used as input parameters to a circuit analysis program such as SPICE or
similar programs.

1. INTRODUCTION

HE INCREASE in speed in modern integrated cir-
Tcuits and printed circuits demands better characteriza-
tion of the electrical parameters which can influence the
performance. At high and ultrahigh speed, when the tracks
and connectors behave as transmission lines, the resistance
increase due to the skin effect can be very important.

The finite element technique is one of the methods
which can be applied to solve skin-effect problems in
shielded or open conducting strip structures. A consider-
able amount of work has been done in solving two-dimen-
sional skin-effect problems [1]-[3], reference [1] containing
an excellent list of papers produced on these topics.

In this paper, the finite element method is applied to
microstrip-like transmission line structures to calculate the
ac resistance and reactance. The approach uses an in-
tegrodifferential finite element formulation [1], [2] in terms
of the magnetic vector potential and assumes a TEM mode
of propagation. It is based on a two-dimensional finite
element solution of the linear diffusion equation, based on
a Galerkin projection method. The algorithm presented in
this paper can be applied to any arbitrary combination of
conducting strips. The conducting strip width is divided in
one-dimensional finite elements, while in the remaining
region two-dimensional triangular finite element are used.
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The ac resistance and reactance derived by the finite
element approach described in this paper take into account
the current distribution inside the conducting strips due to
the skin effect and proximity effect, and can be used for
analysis of these structures in simulation models for multi-
ple coupled transmission lines such as SPICE or other
CAD tools [4].

II. MATHEMATICAL FORMULATION

The skin effect and proximity effect are taken into
account by formulating the problem in terms of the mag-
netic vector potential for structures of microstrip-like
transmission lines embedded in a dielectric substrate con-
tained in a conducting box (see Fig. 1).

The following formulation is also valid for unbounded
strip line structures by using the infinite element approach
for the external boundary [5].

Let us consider the microstrip configuration of Fig. 1,
where the conductors are carrying the alternating currents
i(t)=IV2sin(wr +a,) (k=1,2,---,n) and are sur-
rounded by an inhomogeneous dielectric.

The conductors are parallel to the z axis and have an
electric conductivity ¢ and a cross section S, (k=
1,2, -, n). It is assumed that the magneti¢ permeability of
the strips and of the surrounding medium is .

For the TEM mode of propagation, the complex mag-
netic vector potential has only one component in the z
direction A(x, y) which satisfies the partial differential
equation

—VA(x, y) =poJi(x, ») (1)

where J,(x, y) (k=1,2,---,n) is the current density in-
side each conducting strip, depending on the frequency
and geometrical configuration. The electric field strength

at any point is given by

E=—jod-vV (2)

where V(x, y, z) is the electric scalar component of the
field. Inside the conducting strip, E,=E,=0 and 4, =
A, =0 and we can write

E(x,y)=— jwA(x,y)—dV/dz. (3)

At the same time, at any point inside the conductor dV/dz
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Fig. 1. Strip conductors in a box.

is a complex constant which depends on how the reference
of the magnetic vector potential is chosen [6].

If an average value of the magnetic vector potential is
defined over the cross section of each conducting strip by

. 1
A= S—k/SkA(x,y)dxdy (4)

then the current density for each point of any conducting
strip is given by

Jy=— jwod + jwod + Jy, (5)

where J,, (k=1,2,---, n) is the average current density
distribution defined as the ratio of the total current of the
strip to its cross section S, Jy, =1, /S, (k=1,2,---,n).
By replacing the current density in the initial equations
(1), the general equations which take into account the skin
effect and proximity effect of the conducting strips become

~V2A+jwuooA——jw,uooA~=pOJok on S, (6)
-v4=0 onS, (7)

where S, (k=1,2,---,n) is the cross section of each
conducting strip and S, is the region outside the strips.

To solve the above system of integrodifferential equa-
tions, the boundary conditions corresponding to the mag-
netic vector potential should be taken into account. For a
shielded conducting strips structure, the value of the mag-
netic vector potential on the shield is constant if the shield
is considered a perfect conductor. For simplicity, this value
can be chosen equal to zero and the shield surface will
correspond to a homogeneous Dirichlet boundary condi-
tion. When the shield is a magnetic material of high
permeability, the corresponding boundary condition will
be a homogeneous Neumann one. For open conducting
strips, two approaches can be followed: the region can be
bounded with an approximate Dirichlet or Neumann
boundary or the infinite element approach can be used [5].

For use of the finite element method, (6) and (7) are put
into a Galerkin integral form given by

[S (Vo)(vA) dxdy

+ 3 [ Lonoe (4~ A)o=podoo] dedy =0 (3)
k=1"9
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which must be satisfied for any continuous function
v(x, y), called the testing function. The solution of the
integrodifferential equations can now be obtained by using
a discretization of the Galerkin integrals by means of finite
elements. This will lead us to construct a system of linear
equations in terms of magnetic vector potential.

III. FiNITE ELEMENT SOLUTION

The discretization of (8) can be carried out by using
triangular finite elements. However, for conducting strip
problems, the algorithm can be greatly simplified if the
skin depth is greater than the thickness of the strip [8]. In
this case, the current density will depend on the frequency
only in the width direction.

In this situation, the skin effect in the direction of the
conductor thickness is neglected. The above simplification,
which is a good approximation for frequencies and di-
mensions of conducting strip structures used on printed
circuit boards, changes the Galerkin integrals describing
the field problem to the following expression:

L(Vu)(vA)dxderzélfL[(VU)(VA)

+ jopgo(A— A)v—poow] dx=0. (9)

To simplify the notation, the following description refers
to one shielded conducting strip only, as shown in Fig. 2.

In (9), (vA)? is the integrand of two integrals: the first
extends over the dielectric region, while the second corre-
sponds to the conducting strip cross section where the
magnetic vector potential and consequently the current
density depend only on the width direction. Following this
approach, a combination of triangular and linear finite
elements is used. The dielectric region is divided into
two-dimensional finite elements while one-dimensional
finite elements are used for the conducting strips.

The trial function used for approximating the magnetic
vector potential on each triangle is a linear combination of
polynomials:

A(x, y) = ;a,(x,y)A,

(10)

where «,(x, y) are linear forms and 4, are the node
potentials [1].

The trial function used to approximate the magnetic
vector potential on the conducting strip is given by

A(s) = B,(s) A4, + B (s) 4, = jf _jA, + : _SS‘ 4, (11)

J J i

where s is a variable along the strip width, s, and s,
denote the extension of the linear finite element, and
A4,, A, are the node values corresponding to this element.
The linear functions multiplying the node potentials in
(10) and (11) are called shape functions.

The integral form (9) can now be written as a summa-
tion over all triangles and linear elements. By using as
testing functions v(x, y), the shape functions defined in
(10) and (11) for triangular elements and linear elements,
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Fig. 2. Shielded conducting strip.

respectively, a final system of equations is obtained with
respect to the magnetic vector potential of each node, its
general form being given by

[S,+ jwp,eS,]A4=5b.

(12)
To evaluate the average value of the magnetic vector
potential needed for computation, the connectivity coeffi-
cients are introduced for the one-dimensional finite ele-
ments. These coefficients are defined as follows:
_ { 1 if the i node belongs to the k segments
Cy = .
0 otherwise.
(13)

Using these coefficients, the average magnetic vector
potential for one conducting strip can be written as

1 NOS NP

A~=—- Z Z IkclkAl

2L T /5

(14)

where NP is the total number of points on the strip, NOS
is the number of linear finite elements in which the con-
ducting strip is divided, L is the width of the strip, and /,
is the length of each linear finite element.

IV. CONDUCTING STRIP RESISTANCE AND
REACTANCE

Once the magnetic vector potential is calculated, one
can evaluate the current distribution by using [3]:

J=— jwod + jwoA~+ Jy-

(15)
The ratio between ac resistance and dc resistance can be
written as

ac

= 72z°S (16)
where P = RI? is the power dissipated in the conductor, L
is its length, and S its cross section. The power per unit
length may be calculated as a real part of the flux of the
Poynting vector through a cylindrical surface = (see Fig. 2)
which contains the unit length of the conducting strip.
Starting with the relation

%:Re{fi(fxf{"*)ﬁds} (17)

one can show that the ratio between ac resistance and dc
resistance is given by [6]:

Ay

wotl .
k,=1+Re{j }

(18)

In the same way, the ratio between reactance and dc
resistance can be obtained and is given by the following
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relation:

(19)

From the above formulation, starting from the magnetic
vector potential, one can calculate the current distribution
along the conducting strip, the average value of the mag-
netic vector potential, and, finally, the ratio between ac
and dc resistance and the ratio between reactance and dc
resistance. Since the finite element formulation is not
restricted by the geometry, the approach can be used for
any arbitrary conducting strip configuration. Other param-
eters of interest, such as capacitance per unit length, can
be obtained by using a finite element approach as de-
scribed in [9].

The approach described above has been implemented in
a Fortran program and has been applied to a few exam-
ples.

wotl
kx=Im{]—I——A}

V. ExAMPLES AND NUMERICAL RESULTS

Two configurations of shielded microstrips have been
solved. The first example was used to test the program; it
consists of a symmetrical shielded microstrip problem pre-
viously solved by an analytical technique based on a finite
Fourier transform [7]. Fig. 3 shows the configuration of the
first example.

Since the purpose of this calculation was to compare the
results obtained by the finite element method with those
published in [7] and calculated with the Fourier transform,
the calculations were performed for the same example as
described in [7]. The finite element method using two-
dimensional and one-dimensional elements was applied to
a shielded strip made of copper with the following parame-
ters: g =5 mm, b =155 mm, » =65 mm, and /=12.5 mm.
The calculations were done for a frequency of 50 Hz.

One of the coarse triangularizations used for calcula-
tions is shown in Fig. 4.

For this specific division into finite elements, the current
density distribution was obtained and compared with the
published results obtained by the finite Fourier transform.
Table I shows a comparison between the normalized cur-
rent density obtained by taking the ratio between current
density and dc current distribution for the nodes 1,2,3,4,5
located on the conducting strip (Fig. 4).

1t should be noticed that by using only 30 triangles and
five free nodes on the linear finite elements located on the
strip, the results obtained by the finite element method are
relatively close to those obtained by a Fourier transform
method. With a more refined division into triangles and
linear finite elements (20 free nodes), the results obtained
by the finite element approach were within 1 percent when
compared to those produced by the Fourier transform
method.

The second example solved by using the program based
on the algorithm described in this paper is the multiple-strip
configuration shown in Fig. 5.

For simplicity, the current was assumed in opposite
directions for two adjacent lines and the structure is con-
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Fig. 3. Cross section of a symmetrical shielded strip
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Fig. 4. Division into finite elements.

TABLE1
COMPARISON BETWEEN NORMALIZED CURRENT DENSITY CALCULATED
BY FINITE ELEMENTS AND FINITE FOURIER TRANSFORM

Node Distance Finite element solution Fourier transform [7]

x{mm]

1 0 0.9732 - 3 0.0554 0.9805 ~ 3 0.0374
2 30 1.0046 - j 0.0342 0.9897 - 5 0.0307
3 40 1.0051 - 3 0,0061 1.0089 - 3 0.0059
4 50 1.0204 + 3 0.1102 1.0490 + 3 0.1133
5 55 1.0421 + 3 0.2515 1.0510 + j 0.2811

1 ——— - —_———

4 1 el e | 1 | -1 ‘

|

Fig. 5 Multiple-strip configuration.

sidered periodic. The geometrical parameters considered
for this example are r =5 pm, L =1100 pm, s = 200 pm,
/=125 pm, and d = 500 pm. Due to the periodic structure,
only one cell corresponding to one conducting strip was
solved by replacing the separating wall between two of
them with a homogeneous Dirichlet boundary condition.
Table II shows the current density distribution along one
strip for different frequencies and distances measured from
the center of the strip.

The ratio between ac resistance and dc resistance and
the ratio between reactance and dc resistance, which are
also incorporated in the program, have been calculated
and some of the results are presented in Table III.

The above algorithm and program can be applied suc-
cessfully only in situations where the thickness of the strip
is small compared to the equivalent penetration depth. For
situations where the equivalent penetration depth is com-
parable to the thickness of the strip, the algorithm should
change in order to accommodate two-dimensional finite
elements inside the conducting strip.
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TABLE II
NORMALIZED CURRENT DISTRIBUTION FOR DIFFERENT POINTS ON
THE STRIP AT VARIOUS FREQUENCIES :

DISTANCE NORMALIZED CURRENT DENSITY
um f = 1MHz f =5 MHz f = 10 MHz
0 0.996 0.948 0.877
200 0.997 0.956 0.890
300 0.998 0.968 0.910
400 1.001 1.032 1.062
500 1,006 1.124 1.281
550 1.011 1.231 1.557
TABLE III
RESISTANCE AND REACTANCE RATIO
R X
f[MH ] « a.C, x
z = =
b4 Rd.c. T Rd c
1 1.011 0.171
5 1.262 0.767
10 1.788 1.169
15 2.267 1.269

VI. CONCLUSIONS

The integrodifferential finite element method has been
applied to the skin-effect problem in shielded conducting
strips by using the combination of one- and two-dimen-
sional elements. The results obtained by this approach are
in agreement with those obtained by other methods, such
as the finite Fourier transform.
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