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Abstract —This paper describes a two-dimensional finite element ap-

proach to the quasi-static TEM analysis of shielded or open conducting

strips with applications to VLSI parasitic elements and transmission line

characteristics of printed circuits. The approach uses a combination of

two-dimensionaf and one-dimensional finite elements to solve the field

problems in terms of the magnetic vector potential in the frequency

domain. The method and the algorithm can be applied to shielded or open

conducting strips and takes into account the skin effect and proximity

effect between structures.

The ac resistance and reactance calculated by rising this approach can be

used as input parameters to a circuit anafysis program such as SPICE or

similar programs.

I. INTRODUCTION

T HE INCREASE in speed in modern integrated cir-

cuits and printed circuits demands better characteriza-

tion of the electrical parameters which can influence the

performance. At high and ultrahigh speed, when the tracks

and connectors behave as transmission lines, the resistance

increase due to the skin effect can be very important.

The finite element technique is one of the methods

which can be applied to solve skin-effect problems in

shielded or open conducting strip structures. A consider-

able amount of work has been done in solving two-dimen-

sional skin-effect problems [1]–[3], reference [1] containing

an excellent list of papers produced on these topics.

In this paper, the finite element method is applied to

microstrip-like transmission line structures to calculate the

ac resistance and reactance. The approach uses an in-

tegrodifferential finite element formulation [1], [2] in terms

of the magnetic vector potential and assumes a TEM mode

of propagation. It is based on a two-dimensional finite

element solution of the linear diffusion equation, based on

a Galerkin projection method. The algorithm presented in

this paper cart be applied to any arbitrary combination of

conducting strips. The conducting strip width is divided in

one-dimensional finite elements, while in the remaining

region two-dimensional triangular finite element are used.
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The ac resistance and reactance derived by the finite

element approach described in this paper take into account

the current distribution inside the conducting strips due to

the skin effect and proximity effect, and can be used for

analysis of these structures in simulation models for multi-

ple coupled transmission lines such as SPICE or other

CAD tools [4].

IL MATHEMATICAL FORMULATION

The skin effect and proximity effect are taken into

account by formulating the problem in terms of the mag-

netic vector potential for structures of, microstrip-like

transmission lines embedded in a dielectric substrate con-

tained in a conducting box (see Fig. 1).

The following formulation is also valid for unbounded

strip line structures by using the infinite element approach

for the external boundary [5].

Let us consider the microstrip configuration of Fig. 1,

where the conductors are carrying the alternating currents

i~(t) = l~tisin(tit + a~) (k =1,2,. .0, n) and are sur-

rounded by an inhomogeneous dielectric.

The conductors are parallel to the z axis and have an

electric conductivity u and a cross section Sk (k =

1,2,. ... n). It is assumed that the magnetic permeability of

the strips and of the surrounding medium is p ~.

For the TEM mode of propagation, the complex mag-

netic vector potential has only one component in the z

direction A(x, y) which satisfies the partial differential

equation

–v2A(x, y)=po.lk(x, y) (1)

where .J~(x, y) (k= 1,2,. ... n ) is the current density in-

side each conducting strip, depending on the frequency

and geometrical configuration. The electric field strength

at any point is given by

1?= – juA”-- v V (2)

where V(x, y, z) is the electric scalar component of the

field. Inside the conducting strip, EX = EY = O and AX=

A,= O and we can write

E(x, y) = – j@A(x, y)–dV/dz. (3)

At the same time, at any point inside the conductor dV/dz
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Fig. 1. Strip conductors in a box.

is a complex constant which depends on how the reference

of the magnetic vector potential is chosen [6].

If an average value of the magnetic vector potential is

defined over the cross section of each conducting strip by

(4)

then the current density for each point of any conducting

strip is given by

J~ = – jcooA + juuA-+ JO~ (5)

where JO~ (k =1,2,. . . . n) is the average current density

distribution defined as the ratio of the total current of the

strip to its cross section Sk, JO~= Ik \S~ (k =1,2,. . . . n).

By replacing the current density in the initial equations

(l), the general equations which take into account the skin

effect and proximity effect of the conducting strips become

– v 2A + jupOuA – jupouA” = pOJO, on Sk (6)

–V2A=() on S, (7)

where Sk (k=l,2,. ... n) is the cross section of each

conducting strip and Sd is the region outside the strips.

To solve the above system of integrodifferential equa-

tions, the boundary conditions corresponding to the mag-

netic vector potential should be taken into account. For a

shielded conducting strips structure, the value of the mag-

netic vector potential on the shield is constant if the shield

is considered a perfect conductor. For simplicity, this value

can be chosen equal to zero and the shield surface will

correspond to a homogeneous Dirichlet boundary condi-

tion. When the shield is a magnetic material of high

permeability, the corresponding boundary condition will

be a homogeneous Neumann one. For open conducting

strips, two approaches can be followed: the region can be

bounded with an approximate Dirichlet or Neumann

boundary or the infinite element approach can be used [5].

For use of the finite element method, (6) and (7) are Dut

into a Galerkin integral

/(vu)(vA)dxdy
s

form given by” ‘ ‘ ‘ ‘ ‘

A –~)u –poJo~u] dxdy = O (8)

which must be satisfied for any continuous function

u ( x, y), called the testing function. The solution of the

integrodifferential equations can now be obtained by using

a discretization of the Galerkin integrals by means of finite

elements. This will lead us to construct a system of linear

equations in terms of magnetic vector potential.

III. FINITE ELEMENT SOLUTION

The discretization of (8) can be carried out by using

triangular finite elements. However, for conducting strip

problems, the algorithm can be greatly simplified if the

skin depth is greater than the thickness of the strip [8]. In

this case, the current density will depend on the frequency

only in the width direction.

In this situation, the skin effect in the direction of the

conductor thickness is neglected. The above simplification,

which is a good approximation for frequencies and di-

mensions of conducting strip structures used on printed

circuit boards, changes the Galerkin integrals describing

the field problem to the following expression:

~:vu)(vA)dxdy+f : j [(VU)(VA)
k=l Lk

1+ jupou(A – A“)u –poJo~u dx = O. (9)

To simplify the notation, the following description refers

to one shielded conducting strip only, as shown in Fig. 2.

In (9), (vA)2 is the integrand of two integrals: the first

extends over the dielectric region, while the second corre-

sponds to the conducting strip cross section where the

magnetic vector potential and consequently the current

density depend only on the width direction. Following this

approach, a combination of triangular and linear finite

elements is used. The dielectric region is divided into

two-dimensional finite elements while one-dimensional

finite elements are used for the conducting strips.

The trial function used for approximating the magnetic

vector potential on each triangle is a linear combination of

polynomials:

A(x, y) = ~ LY,(X, y)ftl (lo)
~=1

where a, (x, y) are linear forms and Al are the node

potentials [1].

The trial function used to approximate the magnetic

vector potential on the conducting strip is given by

A(s) =&(s) A,+j3J(s)Aj= ~A, + ~AJ (11)
SJ—S s] — s,

where s is a variable along the strip width, s, and s]

denote the extension of the linear finite element, and

A,, A~ are the node values corresponding to this element.

The linear functions multiplying the node potentials in

(10) and (11) are called shape functions.

The integral form (9) can now be written as a summa-

tion over all triangles and linear elements. By using as

testing functions u(x, y), the shape functions defined in

(10) and (11) for triangular elements and linear elements,
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Fig. 2. Shielded conducting strip.

respectively, a final system of equations is obtained with

respect to the magnetic vector potential of each node, its

general form being given by

[s, + jtipoas,]ll =b. (12)

To evaluate the average value of the magnetic vector

potential needed for computation, the connectivity coeffi-

cients are introduced for the one-dimensional finite ele-

ments. These coefficients are defined as follows:

(

1 if the z’ node belongs to the k segments
Clk =

o otherwise.
(13)

Using these coefficients, the average magnetic vector

potential for one conducting strip can be written as

1 NOS NP

x= — ~ ~ lkc,&’4L
2L’k=l,=l

(14)

where NP is the total number of points on the strip, NOS

is the number of linear finite elements in which the con-

ducting strip is divided, L is the width of the strip, and 1~

is the iength of each linear finite element.

IV. CONDUCTING STRIP RESISTANCE AND

REAcTANcE

Once the magnetic vector potential is calculated,

can evaluate the current distribution by using [3]:

J= – jtiuA+ juuA-+ JO.

one

(15)

The ratio between ac resistance and dc resistance can be

written as
R,C P

k,=—=
R

— 0s
~c 12L

(16)

where P = RI 2 is the power dissipated in the conductor, L

is its length, and S its cross section. The power per unit

length may be calculated as a real part of the flux of the

Poynting vector through a cylindrical surface Z (see Fig. 2)

which contains the unit length of the conducting strip.

Starting with the relation

~=Re {J,( ExH*)mis ) (17)

one can show that the ratio between ac resistance and dc

resistance is given by [6]:

‘=l+Re(J%+(18)

In the same way, the ratio between reactance and dc

resistance can be obtained and is given by the following

1o11

relation:

(}o)otL .
kX = Im j-–-A . (19)

From the above formulation, starting from the magnetic

vector potential, one can calculate the current distribution

along the conducting strip, the average value of the mag-

netic vector potential, and, finally, the ratio between ac

and dc resistance and the ratio between reactance and dc

resistance. Since the finite element formulation is not

restricted by the geometry, the approach can be used for

any arbitrary conducting strip configuration. Other param-

eters of interest, such as capacitance per unit length, can

be obtained by using a finite element approach as de-

scribed in [9].

The approach described above has been implemented in

a Fortran program and has been applied to a few exam-

ples.

V. EXAMPLES AND NUMERICAL RESULTS

Two configurations of shielded microstrips have been

solved. The first example was used to test the program; it

consists of a symmetrical shielded microstrip problem pre-

viously solved by an analytical technique based on a finite

Fourier transform [7]. Fig. 3 shows the configuration of the

first example.

Since the purpose of this calculation was to compare the

results obtained by the finite element method with those

published in [7] and calculated with the Fourier transform,

the calculations were performed for the same example as

described in [7]. The finite element method using two-

dimensional and one-dimensional elements was applied to

a shielded strip made of copper with the following parame-

ters: g = 5 mm, b =55 mm, h =65 mm, and 1=12.5 mm.

The calculations were done for a frequency of 50 Hz.

One of the coarse triangularizations used for calcula-

tions is shown in Fig. 4.

For this specific division into finite elements, the current

density distribution was obtained and compared with the

published results obtained by the finite Fourier transform.

Table I shows a comparison between the normalized cur-

rent density obtained by taking the ratio between current

density and dc current distribution for the nodes 1,2,3,4,5

located on the conducting strip (Fig. 4).

It should be noticed that by using only 30 triangles and

five free nodes on the linear finite elements located on the

strip, the results obtained by the finite element method are

relatively close to those obtained by a Fourier transform

method. With a more refined division into triangles and

linear finite elements (20 free nodes), the results obtained

by the finite element approach were within 1 percent when

compared to those produced by the Fourier transform

method.

The second example solved by using the program based

on the algorithm described in this paper is the multiple-strip

configuration shown in Fig. 5.

For simplicity, the current was assumed in opposite

directions for two adjacent lines and the structure is con-
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Fig, 3. Cross section of a symmetrical shielded strip
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Fig. 4. Division into finite elements.

TABLE I

COMPARISON BETWEEN NORMALIZED CURRENT DENSITY CALCULATED

BY FINITE ELEMENTS AND FINITE FOURIER TRANSFORM

TABLE II
NORMALIZFII CURRENT DISTRIBUTION FOR DIFFERENT POINTS ON

THE STRIP AT VARIOUS FREQUENCIES

DISTANCE NORNALIZED CURRENT DENSITY

urn f = l!iHz f = 5 NHz f = 10 MHz

o 0.996 0.948 0.877

200 0.997 0.956 0.890

300 0.998 0.968 0.910

400 1.001 1.032 1.062

500 1.006 1.124 1.281

550 1.011 1.231 1.557

TABLE III

RESISTANCE AND REACTANCE RATIO

f[MHz]

R x
a.c.

kr=——— kr=—
‘d. c. ‘d. c.

1 1.011 0.171

5 1.262 0.767

10 1.788 1.169Node Distance Finite element solution Fourier transform [7]
x[m]

15 2.267 1.269

1 0 0.9732 - J 0.0554 0.9805 - J 0.0374

2 30 1.0046 - j 0.0342 0.9897 - , 0.0307

3 40 1.0051 - j 0.0061 1.0089 - J 0.0059

L 50 1.0204 + J 0.1102 1.0490 + , 0.1133

5 55 1.0421 + J 0.2515 1.0510 + j 0.2811

j
#---- —— —
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Fig. 5 Multiple-strip configuration.

sidered periodic. The geometrical parameters considered

for this example are t = 5 pm, L = 1100 pm, s = 200 pm,

1 = 125 pm, and d = 500 pm. Due to the periodic structure,

only one cell corresponding to one conducting strip was

solved by replacing the separating wall between two of

them with a homogeneous Dirichlet boundary condition.

Table 11 shows the current density distribution along one

strip for different frequencies and distances measured from

the center of the strip.

The ratio between ac resistance and dc resistance and

the ratio between reactance and dc resistance, which are

also incorporated in the program, have been calculated

and some of the results are presented in Table III.

The above algorithm and program can be applied suc-

cessfully only in situations where the thickness of the strip

is small compared to the equivalent penetration depth. For

situations where the equivalent penetration depth is com-

parable to the thickness of the strip, the algorithm should

change in order to accommodate two-dimensional finite

elements inside the conducting strip.

VI. CONCLUSIONS

The integrodifferential finite element method has been

applied to the skin-effect problem in shielded conducting

strips by using the combination of one- and two-dimen-

sional elements. The results obtained by this approach are

in agreement with those obtained by other methods, such

as the finite Fourier transform.
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